Local Failure Detection in Mobile Distributed Systems

Nigamanth Sridhar
Electrical and Computer Engineering
Cleveland State University

Collaborators: Hamza Zia (CSU), Shiva Sastry (Akron)

Context

Application Area: Wireless Sensor Networks

Goal of WSN: <u>Dense</u> instrumentation of physical world with sensors, actuators.

Consequences:

- Each node has to be extremely cheap and dispensable.
- Failure is the norm, not an exception

Failure Locality

Failure cannot be avoided. Next best strategy is to localize the effects of a failure.

Failure Locality measures distance (in hops) at which the effect of a failure is "felt".

Failure Containment

Basic idea: Failed node's neighbors "detect" the failure, and quarantine the failure; the rest of the network is protected.

How Failure Detectors Work

Basic idea: p waits for some timeout period for some communication from q, and then begins to suspect q.

Several strategies:

- Simple timeouts
- Adaptive timeouts
- Ping + timeout
- Leases

Note that suspicion may not be well-founded!

Example: Dining Philosophers

Problem of resource allocation in a graph.

Each node shares some resource(s) with neighbors. In order to enter critical section, must have permission from all neighbors.

Specification:

Safety: No two neighbors eat simultaneously

Progress: Every hungry node eats eventually

A Solution: Hygienic Dining

- 1. Every edge in graph represents a fork
- 2. A node has to have all forks to eat
- 3. Priority established by partial order

Problem: Poor Failure Locality

Failure Locality measures how far in the graph a failure is "felt".

Hygienic Dining has failure locality d.

Local Failure Detection to the Rescue

If a node suspects one of its neighbors (using a local failure detector), it "shields" the rest of the network from this failure.

Failure locality is 1.

Dynamic Topologies

But here's a new problem: change in network topology!

A local failure detector cannot distinguish between a failed neighbor and a node that's no longer a neighbor; mistakes happen!

Mistakes are Expensive

A single mobile node nullifies the transformation. Failure locality is back to d.

Solution: Share Information

Our approach: once in a while, each node in the network lets others in the network know about who it suspects currently.

 $\Diamond \mathcal{P}_{\ell}^m$ — Eventually Perfect Local Failure Detector that tolerates mobility.

Design of $\Diamond \mathcal{P}_{\ell}^m$

We won't talk about LFD today. Rest of the talk is focussed on SuspectSharing (MD).

SuspectSharing Algorithm

Initiator sends out suspect group (SG) to its neighbors to begin a diffusing computation.

Suspect group contains:

- The set of suspects x that the process u maintains (S_u)
- ullet The durations (ts_x) for which each process x has been suspected
- The id of the process that suspects x (denoted by σ , u in this case)
- The number of hops for which this process x has been in SG (denoted by d_{σ} , 0 initially)

SuspectSharing Algorithm (contd.)

When a node w receives SG, it looks at it, and if it finds any live nodes, w exonerates them.

SuspectSharing Algorithm (contd.)

Each node also adds its local suspects to SG.

SuspectSharing Algorithm (contd.)

In the shrinking phase of diffusing computations, nodes "correct their view of the world".

Implementation

Implementation for "motes" (TinyOS/nesC).

Component is implemented as a middleware service that applications can use.

Local failure detection uses Lease strategy.

Parameters to the failure detector:

- Average lease duration
- Gossip recurrence time

Average Message Overhead/Node

Message Overhead in Entire Network

Mistake Duration

Summary

- Local failure detection is important in sensor network context
- Dynamic topologies are a reality
- $\Diamond \mathcal{P}_{\ell}^m$ performs similar to a local failure detector, and <u>functions</u> like a global failure detector